Teikia „Blogger“.
RSS

St-Martin-des-Champs

The Priory of Saint-Martin-des-Champs was an influential monastery established in what is now the city of Paris, France. Its surviving buildings are considered treasures of medieval architecture in the city.

Contents

History

Foundations

The oldest known structure on the site was a chapel dedicated to St. Martin of Tours, founded during the Merovingian dynasty, which appears in a text of A.D. 710. At a date which remains unknown, a community of monks became established there around the chapel. The abbey they founded was pillaged and destroyed by Norman invaders during the late 900s.
In 1060, King Henry I of France chose to rebuild the complex of the former abbey, intending it then to be a priory of canons regular. At that era, it still remained outside the walls of the city, thus its designation as des champs (in the fields). In 1079 the priory was given to St. Hugh of Cluny and became a Benedictine community, which developed into one of the major houses of the Congregation of Cluny,[1] The priory soon gained major landholdings throughout the region, becoming second in importance only to the Royal Abbey of St-Denis.[2]
The priory church was completed in 1135, having a choir section with a double ambulatory, topped by a simple ribbed arch. The nave was completed during the 13th century, as was the refectory of the priory. The later two are attributed to Pierre de Montreuil. These are the only surviving portions of the monastic complex today.[3]
The priory maintained a major presence in the religious and social life of Paris. It became the site of the last officially sanctioned trial by combat in France in 1386, when both the king and the Parliament of Paris authorized such a contest between the knights Jean de Carrouges and Jacques Le Gris, when the former charged the latter with raping his wife.

Decline

Over time, the priory fell subject to the system of commendatory abbots and became the property of a number of titular priors. The famous Cardinal Richelieu can be counted among their number.[4]
The priory was suppressed in 1790 under the new laws of the French Revolution, and the buildings were used as a prison. The monastic walls and dormitories was soon torn down.

Legacy

The surviving structures of the priory became the home of the Museum of Arts and Crafts, which opened there in 1802. The original Foucault Pendulum was housed there from 1855 until it was irreparably damaged in 2010.[5]


Well, as I showed the metro station “Arts et Métiers” in a previous post (last Sunday), it seems logical that we now make a visit to what you can find on the ground, above the station. What was created during the revolutionary years (in 1794) as the National Conservatory for Arts and Crafts (Arts et Métiers) is still today a higher education state establishment, and since 1802 also a fabulous museum. Originally this was the Priory (or Abbey) of Saint-Martin-des-Champs (St.Martin-in-the-Fields), with very old origins, officially (re)founded in 1060, then well outside the city limits. It’s amazing to see the surface St.Martin – together with the nearby Temple – occupied. St. Martin played for centuries a great role in the French religious history and had some famous priors, including Richelieu.
Contrary to what happened with the Temple (see previous post), some of the old buildings of St.Martin were left to the posterity after the Revolution, including churches, chapels and also a refectory which now is the library of the Conservatory (same architect as the Sainte Chapelle (see previous post) – Peter de Montereau). Some new Conservatory buildings were added during the 19th century and two big new streets crossed the area, including Rue Réaumur (see previous posts), which even made its way between two of the churches, St. Martin and St.Nicolas-des-Champs (see previous post) – see the difference between the 1739 map and today.



The St. Martin church is now part of the museum, the most spectacular from architectural point of view. It was built between the 12th and 14th centuries. This is where you can find some of the bigger objects (top picture) like steam engines, cars and even some of the early aeroplanes including one on which Louis Blériot crossed the Channel in 1909. This is also where you today find (a copy of) the Foucault Pendulum (the original is now transferred to the Panthéon – see previous post), which proves that the globe is rotating. (Umberto Eco’s book “Foucault’s Pendulum” is clearly related to the “Art et Métiers” Museum.)












The museum has totally some 80.000 objects and some 15.000 drawings to testify how techniques of different kinds have developed during centuries. You can see the first photographic equipment (Daguerre...), the first telephones, radios, televisions, calculating machines (one of them is a copy of the one I had on my desk in my first job!), computers, satellites... There are also models of some important construction work, including the NY version of the Statue of Liberty. (In previous posts I have talked about the original statue in the Luxembourg Gardens, about the place where the NY version was constructed...). Of course, a great number of beautiful early precision instruments, clocks... are also exposed. I also found the 1948 model of my 2008 Solex (today electrically driven)!




История музея

Церковь Сен-Мартен-де-Шан (фр. Saint-Martin-des-Champs) построена на месте старой церкви эпохи меровингов. Легенда гласит, что эта церковь была разрушена во время нашествий нормандцев. Точного подтверждения этому нет, но достоверно известно, что в середине XI века Генрих I распоряжается отстроить на этом месте «вторую церковь». Построенная в 1059—1060 годах церковь переходит в 1076 году в ведение ордена Клюни.
Аббатство просуществовало до Французской революции. В 1794 году аббат Анри Грегуар предлагает Национальному конвенту проект создания Консерватории искусств и ремёсел, целью которого станет «изучение и сохранение машин и инструментов, чертежей, и моделей, книг и различной документации всех существующих искусств и ремёсел». Утверждённая Конвентом Консерватория немедленно становится новой хозяйкой множества конфискованных во время революции частных технических коллекций. После продолжительных поисков помещения для нового музея, в 1798 году коллекции Консерватории выделяется помещение церкви Сен-Мартен-де-Шан.
Пострадавшее во время революции здание церкви требовало значительного ремонта (часть этого ремонта описывает в упрощенной форме Лев Толстой в своем произведении «Первая русская книга для чтения», и более подробно Яков Перельман в книге «Физика на каждом шагу»), и музей впервые открывает свои двери широкой публике лишь в 1802 году. С самого зарождения музея одним из принципов его стала интерактивность — работники музея не только показывали, но и объясняли посетителям, как работают выставленные в музее механизмы. Одновременно открывается одноимённое учебное заведение, профессора которого читают лекции по разным областям техники и технологии, а слушатели имеют возможность практиковать полученные знания на выставленных в музее машинах. Институт CNAM существует до сих пор, являясь одним из самых престижных учебных заведений Франции и самым популярным учебным заведением для студентов, совмещающих учёбу с работой (вечернее и заочное отделения). Его филиалы открыты во многих городах Франции.

Церковь Сен-Мартен-де-Шан
В 1830 году под влиянием технической революции консерватория реформируется. Из музея убирают коллекции сельскохозяйственных и ткацких машин, заменяя их на модели и чертежи более современных машин: паровой, кузнечной, бумагоделательной, машины Рада для производства сахара и многих других.
XX век дал Музею множество новых тем: от автомобиля до покорения космоса. В 1990-х годах сценография музея была полностью перестроена, что позволило органично включить эти темы в уже существующую богатую коллекцию музея.

Музей профилактики производственных травм

24 сентября 1904 года при CNAM открывается музей профилактики производственных травм (фр. Musée de la prévention des accidents du travail et d’hygiène industrielle), существующий до сих пор.

Музей в массовой культуре

В помещении музея начинается и заканчивается повествование романа Умберто Эко «Маятник Фуко».

Постоянная коллекция

Коллекция музея разбита на 7 частей:
  • Научные и измерительные инструменты
  • Материалы
  • Строительство
  • Коммуникации
  • Энергия
  • Механика
  • Транспорт
Каждый из разделов музея организован в хронологическом порядке.

Глобус, экспонат музея

Научные и измерительные инструменты

Первые измерительные инструменты появились в доисторические времена — издревле человек стремился максимально точно определить время дня и ночи, измерить расстояние и вес.
В эпоху Возрождения амбиции человека возрастают: в порыве исследования нашей планеты он пытается определить собственное местонахождение. Учёные создают новые измерительные механизмы, счётные машины. Большинство инструментов изготавливается часовыми мастерами или ювелирами, что возводит многие из них в ранг произведений искусства.
В XVIII веке наука — званый гость светских салонов. Механика, оптика, гидравлика, электричество — наглядные демонстрации законов физики пользуются успехом у публики. В то же время, возрастающая точность приборов позволяет создание первых научных лабораторий (наиболее известна лаборатория Лавуазье), отмечая тем самым новую ступень в развитии науки — более специализированной, более строгой.
Для упрощения расчётов — будь то коммерческие, научные или административные — вводится метрическая десятичная система.
Микроскоп Мани, изготовленный для герцога Шолн, 1750-е годы
Microscope-IMG 0513.jpg
В 1751—1754 годах оптик Алексис Мани (фр. Alexis Magny) создал 8 популярных тогда салонных микроскопов. Учитывая применение инструмента, внешнему виду его отводилось столько же внимания, сколько созданию самой оптической части микроскопа — бронзовые украшения были поручены скульптору Кафьери (фр. Caffieri).
Один из этих микроскопов (на илл.) предназначался герцогу Шолн (фр. duc de Chaulnes, 1712—1777), владевшему известным физическим салоном в Париже. Революционным для того времени было создание микро-винтов для тонкого манипулирования предметным столиком и окуляром.
Существовавшие в это время моделей микроскопы можно разбить на три категории:
  • многолинзовые микроскопы, появившиеся в конце XVI века как логическое продолжение первых телескопов;
  • однолинзовые микроскопы, как микроскопы Мани. Изобретение этих микроскопов в XVII веке серьёзно продвинуло человечество в познании устройства живых организмов;
  • солнечные микроскопы, использовавшиеся по большей части в физических салонах XVIII века, позволявшие проецировать на стену увеличенные изображения объектов, невидимых невооружённым глазом: блошиных лап, пыльцы и т. п.
Во второй половине XIX века развитие научных и измерительных инструментов проходит в двух направлениях. С одной стороны, из физических салонов XVIII века выходит экспериментальная наука, позволяющая анализировать, воспроизводить и понимать природу многих природных явлений. С другой, новые инструменты очень быстро замещают ручной труд там, где это возможно — счётные машины и измерительные машины полностью изменяют стиль работы страховых компаний, заводов и фабрик.
Счётная машина Леона Болле, 1889 год
Два с половиной века после создания счётной машины Паскаля, Леон Болле (фр. Léon Bollée, 1870—1913) создаёт свою счётную машину (на илл.). Отцу Леона — мастеру-литейщику колоколов — требовалось производить множество сложных расчётов гармоник, поэтому счётную машину для него проектируют с возможностью умножения.
В том же году изобретение получает золотую медаль Всемирной выставки.
Принцип работы машины заложен в физической реализации таблицы умножения — прямоугольной металлической пластинки со стержнями, длина каждого стержня соответствует произведению двух чисел. Скорость вычисления была немыслимой для той эпохи — 250 операций умножения, 120 извлечений корня или 100 операций деления в час.
Ordi-mecanique-IMG 0517.jpg
XX век — человек расширяет границы познания науки в сторону как бесконечно малого, так и бесконечно большого. Новые инструменты позволяют совершать новые открытия.
Принципиальное отличие от исследований прошлого — отказ от принципа непосредственного наблюдения. Астроном может слушать эхо большого взрыва, положившего начало нашей вселенной. Биолог использует электронные микроскопы, пытаясь понять устройство живой материи вплоть до атомного уровня. Оптика и механика постепенно замещаются электроникой.
Электронный микроскоп и суперкомпьютер
Microscope-IMG 0518.jpg
Купленный в 1973 году Французским институтом медицинских исследований (фр. INSERM), электронный микроскоп (на илл. слева) использовался для изучения рака, здоровых и патогенных клеток человеческого организма.
Переход с оптического микроскопа на электронный в несколько раз увеличил разрешающую способность инструмента. Это позволило развить медицину (идентификация вируса СПИДа), металлургию (механизм пластической деформации) и другие области современной науки.

Созданный в 1985 году суперкомпьютер Cray-2 (на илл. справа) использовался прежде всего для метеорологических расчётов. В то же время, компьютеры этой серии позволили продвинуться в исследовании гидродинамики, океанографии и других задач, требующих больших вычислительных мощностей.
Векторная архитектура машины позволяла производить достичь небывалой для того времени мощности вычислений — 243Мгц. Для охлаждения компьютера, его платы были целиком помещены в охлаждающую жидкость.
Cray-2-IMG 0515.jpg

Материалы

Используемые человеком материалы менялись с развитием цивилизации. Не только из-за изменений доминирующего в обществе вкуса, но и вследствие развития соответствующих технологий. От интуиции мастеров и опыта предков человек постепенно перешёл к физическому и химическому анализу этапов производства материалов.
Во времена Старого Режима мастера объединялись в корпорации, чей контроль способствовал качеству и стандартизации производства. Необходимости разных ремёсел обуславливали местонахождение мастерских: мастера-стеклодувы и производители черепицы, нуждавшиеся в большом количестве энергии для производства, строили свои мастерские в лесах; литейщики, с появлением доменных печей ставшие выплавлять более качественный чугун, — недалеко от месторождений угля; кузнецы — вдоль рек, где энергия текущей воды могла быть использована для приведения в движение мехов и молотов; текстильное производство было поделено между деревней, где производились грубые ткани, и городом, обрабатывавшим шерсть, шёлк и т. п.
Технический прогресс XVIII века структурно перестраивает производство. Благодаря созданию паровой машины, новые ткацкие станки позволяют ткать быстрее и качественнее. Использование коксующегося угля улучшило качество выплавляемого чугуна.
В XIX веке появляются новые материалы: алюминий, пластик, новые типы сталей и стёкол. Новые краски и ткани (в первую очередь искусственный шёлк) преобразовывают ткацкое производство.
Вторая половина XX приносит кардинально новый подход: если раньше человек подбирал среди природных материалов наиболее подходящий, то теперь он может напрямую создавать необходимый ему материал, исходя из требуемых характеристик.
Машина непрерывного литья заготовок, 1984 год
CNAM-IMG 0532.jpg
Вплоть по 1960—1970 годов, производства прокатного листа происходило в три этапа:
  1. разлив стали слитками;
  2. нарезание слитков на слябы;
  3. раскатка слябов в листовое железо.
Современные литейные машины позволяют избежать первого этапа, отливая слябы произвольной длины, тем самым существенно снижая затраты времени и энергии на производство.
В музее представлены также стенды с прототипами литейных машин будущего, которые, возможно, позволят упразднить и второй этап, разливая сталь непосредственно листами.

Строительство

Многоковшовый экскаватор Кувре, 1870 год
CNAM-IMG 0538.jpg
Альфонс Кувре (фр. Alphonse Couvreux) начинает карьеру в 1840-х годах на прокладке железных дорог. В 1860 году он патентует первую версию своего многоковшового экскаватора. В последующие годы изобретатель постоянно совершенствует свой аппарат, и в 1863 году ему доверяют разработку экскаватора для рытья Суэцкого канала.
Основной частью экскаватора является стрела с цепью ковшей для разработки грунта. Выбранный грунт сбрасывается в вагонетки, подаваемые по параллельному пути. Сам экскаватор передвигается по специальной, трёхрельсовой железной дороге, которую перекладывают в процессе продвижения работ. Экскаватор приводится в движение двумя паровыми машинами: одна позволяет передвигать сам экскаватор, другая — более мощная — приводит в движение цепь ковшей.

Коммуникации

Энергия

Механика

Транспорт

Галерея







  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentarai (-ų):

Rašyti komentarą